Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Commun Biol ; 7(1): 21, 2024 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-38182652

RESUMO

B7-H3 (CD276) has two isoforms (2Ig and 4Ig), no confirmed cognate receptor, and physiological functions that remain elusive. While differentially expressed on many solid tumors correlating with poor survival, mechanisms of how B7-H3 signals in cis (tumor cell) versus in trans (immune cell co-regulator) to elicit pro-tumorigenic phenotypes remain poorly defined. Herein, we characterized a tumorigenic and signaling role for tumor cell-expressed 4Ig-B7-H3, the dominant human isoform, in gynecological cancers that could be abrogated upon CRISPR/Cas9 knockout of B7-H3; tumorigenesis was rescued upon re-expression of 4Ig-B7-H3. Size exclusion chromatography revealed dimerization states for the extracellular domains of both human 4Ig- and murine 2Ig-B7-H3. mEGFP lifetimes of expressed 4Ig-B7-H3-mEGFP fusions determined by FRET-FLIM assays confirmed close-proximity interactions of 4Ig-B7-H3 and identified two distinct homo-FRET lifetime populations, consistent with monomeric and homo-dimer interactions. In live cells, bioluminescence imaging of 4Ig-B7-H3-mediated split luciferase complementation showed dimerization of 4Ig-B7-H3. To separate basal from dimer state activities in the absence of a known receptor, C-terminus (cytosolic) chemically-induced dimerization of 4Ig-B7-H3 increased tumor cell proliferation and cell activation signaling pathways (AKT, Jak/STAT, HIF1α, NF-κß) significantly above basal expression of 4Ig-B7-H3 alone. These results revealed a new, dimerization-dependent intrinsic tumorigenic signaling role for 4Ig-B7-H3, likely acting in cis, and provide a therapeutically-actionable target for intervention of B7-H3-dependent tumorigenesis.


Assuntos
Antígenos B7 , Carcinogênese , Proliferação de Células , Transdução de Sinais , Animais , Humanos , Camundongos , Antígenos B7/genética , Dimerização , Polímeros , Isoformas de Proteínas/genética , Fatores de Transcrição
2.
Cancers (Basel) ; 15(15)2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37568603

RESUMO

The worldwide incidence of hepatocellular carcinoma (HCC) continues to rise, in part due to poor diet, limited exercise, and alcohol abuse. Numerous studies have suggested that the loss or mutation of PTEN plays a critical role in HCC tumorigenesis through the activation of the PI3K/Akt signaling axis. The homozygous knockout of PTEN in the livers of mice results in the accumulation of fat (steatosis), inflammation, fibrosis, and eventually progression to HCC. This phenotype bears a striking similarity to non-alcoholic steatohepatitis (NASH) which is thought to occupy an intermediate stage between non-alcoholic fatty liver disease (NAFLD), fibrosis, and HCC. The molecular and physiological phenotypes that manifest during the transition to HCC suggest that molecular imaging could provide a non-invasive screening platform to identify the hallmarks of HCC initiation prior to the presentation of clinical disease. We have carried out longitudinal imaging studies on the liver-specific PTEN knockout mouse model using CT, MRI, and multi-tracer PET to interrogate liver size, steatosis, inflammation, and apoptosis. In male PTEN knockout mice, significant steatosis was observed as early as 3 months using both magnetic resonance spectroscopy (MRS) and computed tomography (CT). Enhanced uptake of the apoptosis tracer 18F-TBD was also observed in the livers of male PTEN homozygous knockout mice between 3 and 4 months of age relative to heterozygous knockout controls. Liver uptake of the inflammation tracer [18F]4FN remained relatively low and constant over 7 months in male PTEN homozygous knockout mice, suggesting the suppression of high-energy ROS/RNS with PTEN deletion relative to heterozygous males where the [18F]4FN liver uptake was elevated at early and late time points. All male PTEN homozygous mice developed HCC lesions by month 10. In contrast to the male cohort, only 20% (2 out of 10) of female PTEN homozygous knockout mice developed HCC lesions by month 10. Steatosis was significantly less pronounced in the female PTEN homozygous knockout mice relative to males and could not accurately predict the eventual occurrence of HCC. As with the males, the [18F]4FN uptake in female PTEN homozygous knockout mice was low and constant throughout the time course. The liver uptake of 18F-TBD at 3 and 4.5 months was higher in the two female PTEN knockout mice that would eventually develop HCC and was the most predictive imaging biomarker for HCC in the female cohort. These studies demonstrate the diagnostic and prognostic role of multi-modal imaging in HCC mouse models and provide compelling evidence that disease progression in the PTEN knockout model is highly dependent on gender.

3.
Mol Imaging Biol ; 24(3): 498-509, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-34905147

RESUMO

PURPOSE: Macropinocytosis serves as a highly conserved endocytotic process that has recently been shown as a critical mechanism by which RAS-transformed cells transport extracellular protein into intracellular amino acid pathways to support their unique metabolic needs. We developed NIR fluorescently labeled molecular imaging probes to monitor macropinocytosis-mediated uptake of albumin in a K-RAS-dependent manner. PROCEDURES: Using western blot analysis, immunofluorescence, and flow cytometry, albumin retention was characterized in vitro across several RAS-activated lung and pancreatic cancer cell lines. AF790-albumin was synthesized and administered to mice bearing K-RAS mutant xenograft tumors of H460 (K-RAS p.Q61H) and H358 (K-RAS p.G12C) non-small cell lung cancers on each flank. Mice were treated daily with 2 mg/kg of ARS-1620, a targeted RAS p.G12C inhibitor, for 2 days and imaged following each treatment. Subsequently, the mice were then treated daily with 10 mg/kg of amiloride, a general inhibitor of macropinocytosis, for 2 days and imaged. Intratumoral distribution of AF790-albumin was assessed in vivo using near-infrared (NIR) fluorescence imaging. RESULTS: Albumin retention was observed as a function of K-RAS activity and macropinocytosis across several lung and pancreatic cancer cell lines. We documented that ARS-1620-induced inhibition of K-RAS activity or amiloride-mediated inhibition of macropinocytosis significantly reduced albumin uptake. Tumor retention in vivo of AF790-albumin was both RAS inhibition-dependent as well as abrogated by inhibition of macropinocytosis. CONCLUSIONS: These data provide a novel approach using NIR-labeled human serum albumin to identify and monitor RAS-driven tumors as well as evaluate the on-target efficacy in vivo of inhibitors, such as ARS-1620.


Assuntos
Antineoplásicos , Neoplasias Pulmonares , Neoplasias Pancreáticas , Albuminas/metabolismo , Albuminas/farmacologia , Amilorida , Animais , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Dextranos , Humanos , Camundongos , Mutação/genética , Imagem Óptica , Neoplasias Pancreáticas/diagnóstico por imagem , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/metabolismo , Piperazinas , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Quinazolinas , Neoplasias Pancreáticas
4.
Mol Cancer Ther ; 21(1): 25-37, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34667114

RESUMO

DIRAS3 is an imprinted tumor suppressor gene that encodes a 26 kDa GTPase with 60% amino acid homology to RAS, but with a distinctive 34 amino acid N-terminal extension required to block RAS function. DIRAS3 is maternally imprinted and expressed only from the paternal allele in normal cells. Loss of expression can occur in a single "hit" through multiple mechanisms. Downregulation of DIRAS3 occurs in cancers of the ovary, breast, lung, prostate, colon, brain, and thyroid. Reexpression of DIRAS3 inhibits signaling through PI3 kinase/AKT, JAK/STAT, and RAS/MAPK, blocking malignant transformation, inhibiting cancer cell growth and motility, and preventing angiogenesis. DIRAS3 is a unique endogenous RAS inhibitor that binds directly to RAS, disrupting RAS dimers and clusters, and preventing RAS-induced transformation. DIRAS3 is essential for autophagy and triggers this process through multiple mechanisms. Reexpression of DIRAS3 induces dormancy in a nu/nu mouse xenograft model of ovarian cancer, inhibiting cancer cell growth and angiogenesis. DIRAS3-mediated induction of autophagy facilitates the survival of dormant cancer cells in a nutrient-poor environment. DIRAS3 expression in dormant, drug-resistant autophagic cancer cells can serve as a biomarker and as a target for novel therapy to eliminate the residual disease that remains after conventional therapy.


Assuntos
Genes Supressores de Tumor/fisiologia , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas ras/metabolismo , Animais , Autofagia , Feminino , Humanos , Camundongos , Transdução de Sinais
5.
Chem Sci ; 12(10): 3526-3543, 2021 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-34163626

RESUMO

In recent decades it has become increasingly clear that induction of autophagy plays an important role in the development of treatment resistance and dormancy in many cancer types. Unfortunately, chloroquine (CQ) and hydroxychloroquine (HCQ), two autophagy inhibitors in clinical trials, suffer from poor pharmacokinetics and high toxicity at therapeutic dosages. This has prompted intense interest in the development of targeted autophagy inhibitors to re-sensitize disease to treatment with minimal impact on normal tissue. We utilized Scanning Unnatural Protease Resistant (SUPR) mRNA display to develop macrocyclic peptides targeting the autophagy protein LC3. The resulting peptides bound LC3A and LC3B-two essential components of the autophagosome maturation machinery-with mid-nanomolar affinities and disrupted protein-protein interactions (PPIs) between LC3 and its binding partners in vitro. The most promising LC3-binding SUPR peptide accessed the cytosol at low micromolar concentrations as measured by chloroalkane penetration assay (CAPA) and inhibited starvation-mediated GFP-LC3 puncta formation in a concentration-dependent manner. LC3-binding SUPR peptides re-sensitized platinum-resistant ovarian cancer cells to cisplatin treatment and triggered accumulation of the adapter protein p62 suggesting decreased autophagic flux through successful disruption of LC3 PPIs in cell culture. In mouse models of metastatic ovarian cancer, treatment with LC3-binding SUPR peptides and carboplatin resulted in almost complete inhibition of tumor growth after four weeks of treatment. These results indicate that SUPR peptide mRNA display can be used to develop cell-penetrating macrocyclic peptides that target and disrupt the autophagic machinery in vitro and in vivo.

6.
J Biol Chem ; 297(1): 100775, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34022218

RESUMO

Cellular pyruvate is an essential metabolite at the crossroads of glycolysis and oxidative phosphorylation, capable of supporting fermentative glycolysis by reduction to lactate mediated by lactate dehydrogenase (LDH) among other functions. Several inherited diseases of mitochondrial metabolism impact extracellular (plasma) pyruvate concentrations, and [1-13C]pyruvate infusion is used in isotope-labeled metabolic tracing studies, including hyperpolarized magnetic resonance spectroscopic imaging. However, how these extracellular pyruvate sources impact intracellular metabolism is not clear. Herein, we examined the effects of excess exogenous pyruvate on intracellular LDH activity, extracellular acidification rates (ECARs) as a measure of lactate production, and hyperpolarized [1-13C]pyruvate-to-[1-13C]lactate conversion rates across a panel of tumor and normal cells. Combined LDH activity and LDHB/LDHA expression analysis intimated various heterotetrameric isoforms comprising LDHA and LDHB in tumor cells, not only canonical LDHA. Millimolar concentrations of exogenous pyruvate induced substrate inhibition of LDH activity in both enzymatic assays ex vivo and in live cells, abrogated glycolytic ECAR, and inhibited hyperpolarized [1-13C]pyruvate-to-[1-13C]lactate conversion rates in cellulo. Of importance, the extent of exogenous pyruvate-induced inhibition of LDH and glycolytic ECAR in live cells was highly dependent on pyruvate influx, functionally mediated by monocarboxylate transporter-1 localized to the plasma membrane. These data provided evidence that highly concentrated bolus injections of pyruvate in vivo may transiently inhibit LDH activity in a tissue type- and monocarboxylate transporter-1-dependent manner. Maintaining plasma pyruvate at submillimolar concentrations could potentially minimize transient metabolic perturbations, improve pyruvate therapy, and enhance quantification of metabolic studies, including hyperpolarized [1-13C]pyruvate magnetic resonance spectroscopic imaging and stable isotope tracer experiments.


Assuntos
L-Lactato Desidrogenase/antagonistas & inibidores , Transportadores de Ácidos Monocarboxílicos/metabolismo , Ácido Pirúvico/farmacologia , Simportadores/metabolismo , Ácidos/metabolismo , Soluções Tampão , Isótopos de Carbono , Extratos Celulares , Linhagem Celular Tumoral , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Espaço Extracelular/química , Glicólise/efeitos dos fármacos , Humanos , Concentração Inibidora 50 , Cinética , L-Lactato Desidrogenase/metabolismo , Ácido Láctico/biossíntese , Especificidade por Substrato/efeitos dos fármacos
7.
Proc Natl Acad Sci U S A ; 117(22): 12121-12130, 2020 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-32424096

RESUMO

HRAS, NRAS, and KRAS4A/KRAS4B comprise the RAS family of small GTPases that regulate signaling pathways controlling cell proliferation, differentiation, and survival. RAS pathway abnormalities cause developmental disorders and cancers. We found that KRAS4B colocalizes on the cell membrane with other RAS isoforms and a subset of prenylated small GTPase family members using a live-cell quantitative split luciferase complementation assay. RAS protein coclustering is mainly mediated by membrane association-facilitated interactions (MAFIs). Using the RAS-RBD (CRAF RAS binding domain) interaction as a model system, we showed that MAFI alone is not sufficient to induce RBD-mediated RAS inhibition. Surprisingly, we discovered that high-affinity membrane-targeted RAS binding proteins inhibit RAS activity and deplete RAS proteins through an autophagosome-lysosome-mediated degradation pathway. Our results provide a mechanism for regulating RAS activity and protein levels, a more detailed understanding of which should lead to therapeutic strategies for inhibiting and depleting oncogenic RAS proteins.


Assuntos
Autofagossomos/metabolismo , Membrana Celular/metabolismo , Lisossomos/metabolismo , Proteínas ras/metabolismo , Humanos , Modelos Moleculares , Domínios e Motivos de Interação entre Proteínas , Isoformas de Proteínas , Transdução de Sinais
8.
Cell Rep ; 29(11): 3448-3459.e6, 2019 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-31825828

RESUMO

Oncogenic RAS mutations drive cancers at many sites. Recent reports suggest that RAS dimerization, multimerization, and clustering correlate strongly with activation of RAS signaling. We have found that re-expression of DIRAS3, a RAS-related small GTPase tumor suppressor that is downregulated in multiple cancers, inhibits RAS/mitogen-activated protein kinase (MAPK) signaling by interacting directly with RAS-forming heteromers, disrupting RAS clustering, inhibiting Raf kinase activation, and inhibiting transformation and growth of cancer cells and xenografts. Disruption of K-RAS cluster formation requires the N terminus of DIRAS3 and interaction of both DIRAS3 and K-RAS with the plasma membrane. Interaction of DIRAS3 with both K-RAS and H-RAS suggests a strategy for inhibiting oncogenic RAS function.


Assuntos
Carcinogênese/metabolismo , Sistema de Sinalização das MAP Quinases , Proteínas rho de Ligação ao GTP/metabolismo , Células 3T3 , Animais , Linhagem Celular Tumoral , Feminino , Humanos , Camundongos , Camundongos Nus , Ligação Proteica , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Quinases raf/metabolismo
9.
Cancers (Basel) ; 11(5)2019 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-31052266

RESUMO

Failure to cure ovarian cancer relates to the persistence of dormant, drug-resistant cancer cells following surgery and chemotherapy. "Second look" surgery can detect small, poorly vascularized nodules of persistent ovarian cancer in ~50% of patients, where >80% are undergoing autophagy and express DIRAS3. Autophagy is one mechanism by which dormant cancer cells survive in nutrient poor environments. DIRAS3 is a tumor suppressor gene downregulated in >60% of primary ovarian cancers by genetic, epigenetic, transcriptional and post-transcriptional mechanisms, that upon re-expression can induce autophagy and dormancy in a xenograft model of ovarian cancer. We examined the expression of DIRAS3 and autophagy in ovarian cancer cells following nutrient deprivation and the mechanism by which they are upregulated. We have found that DIRAS3 mediates autophagy induced by amino acid starvation, where nutrient sensing by mTOR plays a central role. Withdrawal of amino acids downregulates mTOR, decreases binding of E2F1/4 to the DIRAS3 promoter, upregulates DIRAS3 and induces autophagy. By contrast, acute amino acid deprivation did not affect epigenetic regulation of DIRAS3 or expression of miRNAs that regulate DIRAS3. Under nutrient poor conditions DIRAS3 can be transcriptionally upregulated, inducing autophagy that could sustain dormant ovarian cancer cells.

10.
Cancer Prev Res (Phila) ; 12(6): 391-400, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30967390

RESUMO

Early detection of ovarian cancer has the potential to impact mortality. A multimodal screening strategy where rising CA125 values over time, analyzed with the risk of ovarian cancer algorithm (ROCA), triggers transvaginal sonography and possible surgery has high sensitivity and specificity, but still fails to detect the 20% of early-stage cases that do not express CA125. Use of multiple biomarkers could detect cases missed by CA125. We have studied the sensitivity and lead time of a multi-marker panel (CA125, HE4, MMP-7, and CA 72-4) compared with CA125 alone. We used PRoBE design principles to select preclinical longitudinal specimens from 75 women (50 screen-positive, 25 screen-negative) who developed invasive epithelial ovarian cancer (3-5 serial specimens each) and 547 corresponding healthy controls (1-10 serial specimens each) from the ovarian cancer screening trial, UKCTOCS, in a blinded fashion. We measured the multi-marker concentrations in ultra-low serum volumes (16 µL) utilizing multiplexed bead-based immunoassays with low detection limits, high inter- and intra-assay precision, negligible cross-reactivity, and good correlation with standard immunoassays. While, at least one of the complementary biomarkers rose with CA125 in 44% (22/50) of screen-positive cases, there was no advantage in lead time over CA125. Therefore, we developed single-marker longitudinal algorithms (ROCA-like) to determine the presence of a change point to distinguish between the cases and controls. Using these algorithms, at 98% specificity, HE4 and CA72-4 identified 16% (4/25) of screen-negative cases, while MMP-7 identified none. Taken together, HE4 and CA72-4 show promise as complementary biomarkers to CA125 for longitudinal screening.


Assuntos
Adenocarcinoma de Células Claras/diagnóstico , Adenocarcinoma Mucinoso/diagnóstico , Biomarcadores Tumorais/sangue , Antígeno Ca-125/sangue , Cistadenocarcinoma Seroso/diagnóstico , Neoplasias do Endométrio/diagnóstico , Neoplasias Ovarianas/diagnóstico , Adenocarcinoma de Células Claras/sangue , Adenocarcinoma Mucinoso/sangue , Idoso , Algoritmos , Estudos de Casos e Controles , Cistadenocarcinoma Seroso/sangue , Detecção Precoce de Câncer/métodos , Neoplasias do Endométrio/sangue , Feminino , Seguimentos , Humanos , Estudos Longitudinais , Pessoa de Meia-Idade , Neoplasias Ovarianas/sangue , Prognóstico , Estudos Retrospectivos
11.
Cancers (Basel) ; 11(4)2019 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-31003488

RESUMO

Autophagy can protect cancer cells from acute starvation and enhance resistance to chemotherapy. Previously, we reported that autophagy plays a critical role in the survival of dormant, drug resistant ovarian cancer cells using human xenograft models and correlated the up-regulation of autophagy and DIRAS3 expression in clinical samples obtained during "second look" operations. DIRAS3 is an imprinted tumor suppressor gene that encodes a 26 kD GTPase with homology to RAS that inhibits cancer cell proliferation and motility. Re-expression of DIRAS3 in ovarian cancer xenografts also induces dormancy and autophagy. DIRAS3 can bind to Beclin1 forming the Autophagy Initiation Complex that triggers autophagosome formation. Both the N-terminus of DIRAS3 (residues 15-33) and the switch II region of DIRAS3 (residues 93-107) interact directly with BECN1. We have identified an autophagy-inhibiting peptide based on the switch II region of DIRAS3 linked to Tat peptide that is taken up by ovarian cancer cells, binds Beclin1 and inhibits starvation-induced DIRAS3-mediated autophagy.

12.
Cancer ; 125(8): 1267-1280, 2019 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-30620384

RESUMO

BACKGROUND: Re-expression of the imprinted tumor suppressor gene DIRAS family GTPase 3 (DIRAS3) (aplysia ras homology member I [ARHI]) induces autophagy and tumor dormancy in ovarian cancer xenografts, but drives autophagic cancer cell death in cell culture. The current study explored the tumor and host factors required to prevent autophagic cancer cell death in xenografts and the use of antibodies against those factors or their receptors to eliminate dormant autophagic ovarian cancer cells. METHODS: Survival factors (insulinlike growth factor 1 [IGF-1], vascular endothelial growth factor [VEGF], and interleukin 8 [IL-8]) were detected with growth factor arrays and measured using enzyme-linked immunoadsorbent assay analysis. Phosphorylation of protein kinase B (AKT), phosphorylation of extracellular signal-regulated kinase (ERK), nuclear localization of translocation factor EB (TFEB) or forkhead box O3a (FOXo3a), and expression of microtubule-associated proteins 1A/1B light chain 3B (MAPLC3B; LC3B) were examined using Western blot analysis. The effect of treatment with antibodies against survival factors or their receptors was studied using DIRAS3-induced dormant xenograft models. RESULTS: Ovarian cancer cells grown subcutaneously in nude mice exhibited higher levels of phosphorylated ERK/AKT activity and lower levels of nuclear TFEB/FOXo3a, MAPLC3B, and autophagy compared with cells grown in culture. Induction of autophagy and dormancy with DIRAS3 was associated with decreased ERK/AKT signaling. The addition of VEGF, IGF-1, and IL-8 weakened the inhibitory effect of DIRAS3 on ERK/AKT activity and reduced DIRAS3-mediated TFEB or FOXo3a nuclear localization and MAPLC3B expression in ovarian cancer cells. Treatment with antibodies against VEGF, IL-8, and IGF receptor inhibited the growth of dormant xenografts, thereby prolonging survival from 99 to >220 days (P < .05) and curing a percentage of mice. CONCLUSIONS: Treatment with a combination of anti-VEGF, anti-IL-8, and anti-IGF receptor antibodies prevented the outgrowth of dormant cells and prolonged survival in a preclinical model.


Assuntos
Anticorpos/administração & dosagem , Interleucina-8/metabolismo , Neoplasias Ovarianas/tratamento farmacológico , Somatomedinas/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Proteínas rho de Ligação ao GTP/metabolismo , Animais , Anticorpos/farmacologia , Autofagia/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Interleucina-8/antagonistas & inibidores , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Camundongos , Camundongos Nus , Neoplasias Ovarianas/metabolismo , Fosforilação , Somatomedinas/antagonistas & inibidores , Fator A de Crescimento do Endotélio Vascular/antagonistas & inibidores , Ensaios Antitumorais Modelo de Xenoenxerto , Proteínas rho de Ligação ao GTP/genética
13.
Autophagy ; 14(4): 637-653, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29368982

RESUMO

Among the 3 GTPases in the DIRAS family, DIRAS3/ARHI is the best characterized. DIRAS3 is an imprinted tumor suppressor gene that encodes a 26-kDa GTPase that shares 60% homology to RAS and RAP. DIRAS3 is downregulated in many tumor types, including ovarian cancer, where re-expression inhibits cancer cell growth, reduces motility, promotes tumor dormancy and induces macroautophagy/autophagy. Previously, we demonstrated that DIRAS3 is required for autophagy in human cells. Diras3 has been lost from the mouse genome during evolutionary re-arrangement, but murine cells can still undergo autophagy. We have tested whether DIRAS1 and DIRAS2, which are homologs found in both human and murine cells, could serve as surrogates to DIRAS3 in the murine genome affecting autophagy and cancer cell growth. Similar to DIRAS3, these 2 GTPases share 40-50% homology to RAS and RAP, but differ from DIRAS3 primarily in the lengths of their N-terminal extensions. We found that DIRAS1 and DIRAS2 are downregulated in ovarian cancer and are associated with decreased disease-free and overall survival. Re-expression of these genes suppressed growth of human and murine ovarian cancer cells by inducing autophagy-mediated cell death. Mechanistically, DIRAS1 and DIRAS2 induce and regulate autophagy by inhibition of the AKT1-MTOR and RAS-MAPK signaling pathways and modulating nuclear localization of the autophagy-related transcription factors FOXO3/FOXO3A and TFEB. Taken together, these data suggest that DIRAS1 and DIRAS2 likely serve as surrogates in the murine genome for DIRAS3, and may function as a backup system to fine-tune autophagy in humans.


Assuntos
Autofagia/fisiologia , Carcinoma Epitelial do Ovário/metabolismo , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Neoplasias Ovarianas/metabolismo , Animais , Linhagem Celular Tumoral , Feminino , GTP Fosfo-Hidrolases/metabolismo , Neoplasias Ovarianas/patologia , Ovário/metabolismo , Proteínas Supressoras de Tumor/metabolismo
14.
BMC Cancer ; 16(1): 824, 2016 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-27784287

RESUMO

BACKGROUND: Autophagy is a bulk catabolic process that modulates tumorigenesis, therapeutic resistance, and dormancy. The tumor suppressor ARHI (DIRAS3) is a potent inducer of autophagy and its expression results in necroptotic cell death in vitro and tumor dormancy in vivo. ARHI is down-regulated or lost in over 60 % of primary ovarian tumors yet is dramatically up-regulated in metastatic disease. The metabolic changes that occur during ARHI induction and their role in modulating death and dormancy are unknown. METHODS: We employed Nuclear Magnetic Resonance (NMR)-based metabolomic strategies to characterize changes in key metabolic pathways in both cell culture and xenograft models of ARHI expression and autophagy. These pathways were further interrogated by cell-based immunofluorescence imaging, tracer uptake studies, targeted metabolic inhibition, and in vivo PET/CT imaging. RESULTS: Induction of ARHI in cell culture models resulted in an autophagy-dependent increase in lactate production along with increased glucose uptake and enhanced sensitivity to glycolytic inhibitors. Increased uptake of glutamine was also dependent on autophagy and dramatically sensitized cultured ARHI-expressing ovarian cancer cell lines to glutaminase inhibition. Induction of ARHI resulted in a reduction in mitochondrial respiration, decreased mitochondrial membrane potential, and decreased Tom20 staining suggesting an ARHI-dependent loss of mitochondrial function. ARHI induction in mouse xenograft models resulted in an increase in free amino acids, a transient increase in [18F]-FDG uptake, and significantly altered choline metabolism. CONCLUSIONS: ARHI expression has previously been shown to trigger autophagy-associated necroptosis in cell culture. In this study, we have demonstrated that ARHI expression results in decreased cellular ATP/ADP, increased oxidative stress, and decreased mitochondrial function. While this bioenergetic shock is consistent with programmed necrosis, our data indicates that the accompanying up-regulation of glycolysis and glutaminolysis is autophagy-dependent and serves to support cell viability rather than facilitate necroptotic cell death. While the mechanistic basis for metabolic up-regulation following ARHI induction is unknown, our preliminary data suggest that decreased mitochondrial function and increased metabolic demand may play a role. These alterations in fundamental metabolic pathways during autophagy-associated necroptosis may provide the basis for new therapeutic strategies for the treatment of dormant ovarian tumors.


Assuntos
Autofagia , Redes e Vias Metabólicas , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/patologia , Proteínas rho de Ligação ao GTP/metabolismo , Animais , Linhagem Celular Tumoral , Modelos Animais de Doenças , Feminino , Glucose/metabolismo , Glutamatos/metabolismo , Glutamina/metabolismo , Glicólise , Xenoenxertos , Humanos , Potencial da Membrana Mitocondrial , Camundongos , Mitocôndrias/metabolismo , Neoplasias Ovarianas/diagnóstico por imagem , Estresse Oxidativo , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada
15.
Oncotarget ; 7(12): 14871-84, 2016 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-26918940

RESUMO

Transmembrane mucins (TMs) are restricted to the apical surface of normal epithelia. In cancer, TMs not only are over-expressed, but also lose polarized distribution. MUC16/CA125 is a high molecular weight TM carrying the CA125 epitope, a well-known molecular marker for human cancers. MUC16 mRNA and protein expression was mildly stimulated by low concentrations of TNFα (2.5 ng/ml) or IFNγ (20 IU/ml) when used alone; however, combined treatment with both cytokines resulted in a moderate (3-fold or less) to large (> 10-fold) stimulation of MUC16 mRNA and protein expression in a variety of cancer cell types indicating that this may be a general response. Human cancer tissue microarray analysis indicated that MUC16 expression directly correlates with TNFα and IFNγ staining intensities in certain cancers. We show that NFκB is an important mediator of cytokine stimulation of MUC16 since siRNA-mediated knockdown of NFκB/p65 greatly reduced cytokine responsiveness. Finally, we demonstrate that the 250 bp proximal promoter region of MUC16 contains an NFκB binding site that accounts for a large portion of the TNFα response. Developing methods to manipulate MUC16 expression could provide new approaches to treating cancers whose growth or metastasis is characterized by elevated levels of TMs, including MUC16.


Assuntos
Biomarcadores Tumorais/metabolismo , Neoplasias da Mama/metabolismo , Antígeno Ca-125/metabolismo , Neoplasias do Endométrio/metabolismo , Interferon gama/farmacologia , Neoplasias Ovarianas/metabolismo , Fator de Necrose Tumoral alfa/farmacologia , Antivirais/farmacologia , Biomarcadores Tumorais/genética , Neoplasias da Mama/tratamento farmacológico , Antígeno Ca-125/genética , Neoplasias do Endométrio/tratamento farmacológico , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , NF-kappa B/genética , NF-kappa B/metabolismo , Neoplasias Ovarianas/tratamento farmacológico , Ligação Proteica , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...